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(thickness, elastic lprolperties, Poisson ratios), the geometry of the patch p~lacement, andl the
voltages into the patches. In the case of the shell, the coupling bet ween b~endling and~ in-
plane deformations, which is (lite to the curvature, is retainedl. These models are sufficiently
general to allow for Jpoteiitially different patch voltages which Imp~lies that they canl be suilt-
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1 Introduction

The use of piezoceramic elements as sensors and actuators has burgeoned in the last several
years in applications ranging from the measurement and (damping of vibrations in large flexi-
ble structures to the control of noise in structural acoustics settings. Their utility as sensors
derives from the p)roperty that when the element is sul)jected to a mechanical strain, a voltage
proportional to the strain is produced. Conversely, they also exhibit the phenomenon that
an applied polarization voltage across the unconstrained element produces in-plane mechan-
ical strains in the material. Because of these properties, piezoceramic elements have found
increasing success both as sensors such as strain gauges and accelerometers and as distributed
actuators. Their success as actuators is augmented by the fact that they can be used to di-
rectly control local vibrations without applying rigid body forces and torques, and due to their
distributed nature, they are less prone to spillover effects in many control strategies. More-
over, the piezoceramic elements or patches are inexpensive, lightweight, space efficient and
can be easily shaped or bonded to a variety of surfaces. Hence a large number of patches canl
be used to sense and control without significantly changing the mass or dynamic properties
of the system.

In order to obtain optimal results with the piezoceramic elements or patches in sensing

and control applications, it is necessary to have accurate models of the mechanics of induced
strain actuation. This modeling also provides knowledge of the p)hysical limitnations of the
piezoceramic patches as actuators in various settings. Detailed models have been dheveloped
for piezoceramic patch interaction with Euler-Bernoulli beams [2, 3, .1, 5. 101 and thin plates
[6, 12]. Because many of the initial applications of piezoceramic elements were in settings
involving the sensing and control of bending deformations (these vib)rations are ,dominant in
many low frequency vibration and noise control problems), most of these models concentrate
on patch configurations which excite pure bending motion of the subst ructuire with more
limited discussions of pure extensional excitation. It was not, until [10] that a model was
developed which provided for simultaneous excitation of both bending and extensional de-
formations in an Euler-Bernoulli beam. One motivation for developing such a model is the
observation that in complex coupled systems, in-plane vibrations with small disp)lacements can
have large in-plane energy levels due to the property that beams are much stiffer in extension
than in bending. This in-plane energy can then couple into flexural vibrations at structural
discontinuities such as joints, thus necessitating the control of both bending and extensional
vibrations in such structures. As determined by Fuller et al [8] through exl)erimental work,
si nultaneous reductions in both flexural and extensional deformations in a beam can be ob-
tained through the use of asymmetric pairs of piezoceramic actuators and sensors in a(daptive
control schemes, and the analytic work in [10] was a first step toward developing a model
which could be used in further such control settings. In that work, force and momentl balanc-
ing were used to determine expressions for the moments anld strains induced by the activat ion
of a single l)iezoceramic patch which was bonded to an Eluler-lierinoulli beam.



lIn add(itioni to lbeaiiis ando p)lat es, thinn (last ic shll s are ofte u'izsedl to dlescribew variolus
struicturral comnponents as well as whzen miodelinig tile coulpling 1bet weeni struict zirla! vi brat ions

aii dtheiI' r~liai zi or rceivng aonsti c ield .Fr Xam piel(. tlie I ransi iiissoionof son 11(1 tl iiroglI
an) airplane fuselage (Ili(e to low frequencY, high am pliutdie exterior acouist ic fields c-an be
moVdeled byv it viibra~tinig t hi n cylindi~rical shell which Is coupled to an uIt erior acolist ic pressulre
fiel d [91. Ili ordler to opt. iinal Iv conitrol t he Inte(rior noise, via plezoc-era urnc pat ch actuia 1101).

one first needls to accitrately m1odlel thlt initeract ions ibet weeul tite patcdies aiid tlie( shell. TI1is1
raises modeling Issues which differ from t hose eiicouint ered III tilie beam and plate aal t'se's InI
that tile inl-planle and bending vib~rat ions are( coupled iii thle cyliindIrical shell (liie to ciirvatinre

effec'ts.

i A\,lbee ibased oioll (laeedscrihein thie~ocry i [1 at1l /c1i9ria lolIlt( in aelriir
ii leeni~ae~lon l~vee(1shel thory[1119]oi the misc, of flat plate piezoceramil ic coupling

result s when determinifing the resulting loadliug on the shl [I 5ý Ilii tlie first case iis assliiiieol
that the piezoceranmic material makes upl anl entire layer of I lie (last ic struictuire anud heince
t his mlodel is of limited Ilse whenl consideri zg small patchies as act nators. WVhen ulsinzg tlit(,
flat p~late theory, it, Is assuimedl that the p~atchi (dimensions are' small ill coimpiarisoin with thile
cvliii nder radiuis. ('irvatuire 1)roTpert ies are thlen nieglecte ('1when modlel inzg t lie couplpinizg between
the patch andI shell andl (eternnining the loadlinzg (tlue to act ivat ion of tit( p)atclh.

Ili t his work, we p)resenit general models for t lie interactin be1 l(tw~eein a pair of lpi(zoceramilC
p)at ches and (elast ic subistruict tires consisting of a beam, lplatte or thlini she1 l I.lii t he( case of a
shell, the pat ches are assumed to be curved and the( coupliiig be(t ween' b('dinhig and~ Iii-jlaiie
decformlations, which is (tle t~o the( cuirvatuire, is re'taiined(. The techniques usedl to develop thle
shld!/pat ch inrteraction model are also used to (develop) geineral imodels de(scrib~ing tit(, imomieiits
and forces whichi are generate'd by the activation of piezoceramic patchies which have beenl
boindedl to a. fla~t p~late' or beam. Thlese( models differ from t hose Iin [6. 12] andl [2. :3, -, 5] Inl
that, t hex allow for dliff'erenit volt ages Inito the Individual patches t hims adlmittIinzg tithe anialIsis

of siinmrlt azzeolis excita~tions of bo0th b~endling aind extensional comnpone'nt s. Ill the case of t lie'
beam, tithe model is slight ly more general than t.hat i ri [10] sinrce It, is dlerivedl for two act1i y
patches. Heiice it. is app)~ropriat e for models Iin which both pi1 atches act nat e withi potemit ially
difIferenit volt ag(es inmto the patches. Ini the( case of oiie, actumat inzg patcli. however. t ie model
redulce's to t hat. in [10]. From a cointrol p)(rspect i v(. the(se imiodels are Iinport~anit si uice t hey
providle for greater latituide uil designinzg control strat egies inmvolving the use of pliezoceuramiic
elemlents to) affect bothl the( bendinig aind extensional p~roperties of a structure.

As a. pre'luide t~o tihe developmieiit of the( patclh Initeract~ioin imodels, v(pqtat ions of mlot ion for
t he uiniderlyinrg suibhstruci(tumres are p~resenitedl withl speci al attention pa ld to I hi(, coiit ributilolls
(due( t~o ext~eriially appjl ied imoiieints and forces sinice this is wlicer( the inuteractioins bet ween
tit(li patches and stibstmrictn re occur. 'FThe aztial 'ysis leadlin rigup to Olie st ructuiiralI eiiat iozis also
Tiiot ivales miianyi of th le techniiques (' wh icli a.r(' misedl to develop tihe p~at ch interact ion miodel s.

To .iis vislid, a synopsis of the der'i vation of t lie( stronig forii of thle ti Mime-dcpneltz~eit DornnrellI-
NIuislit ari tliiislid 1heql vua~tjouis from Newt~oiiian p~riinciples ( for'ce and mioiienit. balancinig) is
p)resenit~ed inl Section 2. A comp jlet~e treatment of thliis topic can be found iii [13. 1-1, I6. 1 7.
181 and the imicluided discussion is limited to sumumarizing that, material which is nieeded for
developinzg thle selcl /plat~chi Inzteract ion miodIel as pre'senited In tlie( following section. Thie ch~oice
of thle D oii uid I- iMushltari muodel is for ease of hpresenitat.iou andi~ as not ed at, various polil nItlli tlie(
di scu ssion, tlie( pat cli/sliei I inuteract ion model c-an be ~easilyv ext ended to higher order niodels



as warranted by the physical situation.
An inherent disadvantage of the strong form for the equilibrium equations when the ex-

ternal loads are generated by piezoceramic elements is the resulting presence of the first and
second derivatives of the Hleaviside function due to the finite support of the p)atches. As a
result of this as well as other identification and approximation issues, we then develop the
weak form of the time-dependent Doinell-Mushtari shell equations. This is done in more
detail since this development is less readily available in the the literature. [his formulation is
advantageous in many approximation schemes, admits the identification of discontinuous ma-
terial parameters, and eliminates the problem of differentiating the Heaviside function since
the derivatives are transferred onto the test functions.

The second section concludes with a synopsis of the strong and weak forms of the Kirchhoff
plate and Euler-Bernoulli beam equations. As in the shell discussion, particular emphasis is
placed on the contributions of externally applied forces and moments since this is where the
coupling between the substructure and piezoceramic patches occurs.

The patch contributions to the cylindrical shell equations are developed in Section :3. In
order to determine the loading due to patch moments and forces, it is useful to first express
them in terms of the normal strains and changes in curvature of the middle surface of the
cylindrical shell. To do this, the stress-strain relations in the patch and shell are developed
which then allows the moment and force resultants for the patch to be formulated in terms of
midsurface shell properties. The unknown normal strains and midsurface changes in curval ure,
and hence the patch moments and forces, are then determined by moment and force balancing.
In this manner, the loading due to activation of the patches can be expressed in terms of
material properties of the patches and shell (thickness. elastic properties. and Poisson ratios).
the radius of curvature of the shell, and the voltage being ap)plied to the patches.

In Section 4, the techniques of the third section are tailored to composite structures consist-
ing of piezoceramic patches which are bonded to plates and beams. The resulting plate/patch
interaction model is shown to be equivalent to that of [12] in the special case when pure
bending motion is excited (the model in [12] was derived by isolating the interface stress for
the system and treating it as the unknown to be determined). Due to its generality however,
our model also allows for more complex interactions involving both bending and exteisioi.,d
components since the voltages into the individual patches can differ. As discussed earlie',. the
beam/patch interaction model reduces to the model in [10] in the case of one actuatini , patch
but is slightly more general in that it also admits models in which two patches ar, used for
actuating with potentially different voltages into the patches. As with the shells, t Lhis provides
structure/patch interaction models which can be used in various structural adl structural
acoustics control settings.
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2 Underlying Shell, Plate and Beam Equations

Iltrouigholit this discussion, we (onsider a I Iin circtilar (cVlitid1rical shell of radius R. It hickriess h
and having the axial coordinat e x as shown iII Fig.,it 1. The varial le s Invasillres Ihlie Iisi ance
of a point of] the shell from the correspoindifig point on th iltnid(lle surface (s 0) along tihe
itorinal to the middle surfac'e.

Figure 1. The ( 1ylindrical Thin Shell.

Strain-Displacement Relations

By cotu1 ining Love's shell assitIrptions with t he st raitt-dislplacement equal iolts of t hree
(iitientsiottal elasticityv t heory, otte obtains t he strain relatijols

(9 r •x +'1 ZKX

1

c--1 + z/t? (z +F ZN'o) (:2.1)

- v

where t•1 attl ( are tiorital straius art an arbitrary point withit the cylindrical s'rel anI "i is
lie shear strainin Lover s S.h l adim(i are the tortal ati shear strains i the middle strface atid

*'. K'9 atid r" are t~he min lsltrface chtatges itt (curvatinre and niidsltrfac(' twist (see [I1]. page S)
Noti thati withti ite framework of infiiitesimal (last icity. thlie eqoeat ioots (2.the) are exact

at ielit 1 th yrne- Heeigg-Lt ar ye sitel the tory thts ranpdrest thlie exacti for of mile kiiem anlid



equations. In the Donnell-Mushtari theory, one neglects the underlined terms z/R with respect
to unity thus leaving

C, = + Z Kh'

Co = o + ZKo (2.2)

Tro = E9 + z ( + .

In terms of the axial, tangential and radial displacements u, v and w, respectively. the
expressions for the midsurface strains and changes in curvature for the cylindrical shell are

Ox 01 2
C- -rO 9U1 2 U) 1 (

E-o - OO+ -KO 2  + 1 0 (2.3)

a, 1 0u 2 02w1, 2 0 v
Hr + 0 ROOr I? OxOO R~

As before, the underlined terms are retained in the Byrne, Fliigge and Lur've theory
antd are discarded in the Donnell-M ushtari theory. We point out that the equations (2.1)
aid (2.3) (lifter from those arising in the theory of flat plates b)oth in the presence of the
length differential RdO as well as in the retention of the strain terms _. and Eig (only bending
contributions are considered in the corresponding models of the transverse vibrations of a flat
plate).

Stress-Strain Relations

To determnine the constitutive p)roperties of the shell, it is assumed that the shell material is
elastic and isotrop)ic. Hooke's law in conjumction with the assumption that the transverse shear
stresses 0r". and 0o0 as well as the normal straini component e2 are small in comparison with
other stresses and strains (these conditions are part of Love's third and fourth assumptions)
then yields

E
-X 1 - u2(c + Vc0)

=0- 1 E (Co + vC') (2.)

E
x 0 0x = 22(1 + u)

where o aind Oo are normal stresses anid rro and( r70, are tangential shear stresses. The
constants E and v are the Young's modulus and Poisson ratio for the shell.



Force and Moment Resultants

By integrating the stresses over the face of a fundamental element, the force resultants can
be expressed as

N.,o 0•o1A z dz

and
[N ] rh/2[ 0'~No a= [ o dz.

OQo J-h/2 oI

Similarly, the moment resultants are

M -h/2 O'x __

and

Al _o h/2 90 i zdz
MOX J-h/2 ex I

"Tihe orientation of the various forces and moments are shown in Figure 2. We point out that
the transverse shear stresses oxz and o-o. are used when obtaining the force resultants Q, and
Qo even though they are omitted in the constitutive relations. This is one of the contradictions
which arises in the classical shell theory.

Qn

NoN
N o x 0 d x+ N~o N0n d

dNx dNo
+ NdO

N +dNxX+ d."d"dx4 
+d~ xddýd ddd

xX dM+'
dNx

Figure 2. Force and Moment Resultants for the Cylindrical Shell.

NX+ "N. Mo. 0 Mn



In the Donnell-Mushtari theory, the underlined terms zIR are neglected in comparison to
unity, and the integrals are determined accordingly to y d

N Eli [Ou (1 dv wv El E 3  r d 2U, d, 17
-(I,",) [0.r (R 0 n0 [R 12(1-v2) r2 R 2 002/

E, I i IV v d Eh3  1 d2[ 11',
No (1 [- -0 +VJ - M -12(l =2) -- + -x2J (2.5)

Eh l r = 1u 1 Eh 3  d 2 w
N2( + v) IOr+R00 12R(I + v) d.rdO

Similar expressions are obtained in the higher order theories.

Strong Form of the Donnell-Mushtari Shell Equations

The equations of the dynamic equilibrium of the element are obtained by balancing the
internal force and moment resultants as shown in Figure 2 with any externally applied forces
an(l moments. Let

=l. + 4 oo + 4'J,

and
7ýi = ?h'i' + lhoio

denote the surface forces and moments due to an external field which is acting on the middle
surface. Hence ý7 and 171 have units of force and moment per unit area, respectively.

(Considering equilibrium of the forces in the x, 0 and z directions yields

R +N-- N, + -fU+ R4, = 0
Oxr do

O N0  N.•oO-O + RN + Qo + R4o =0 (2.6)

do OQx
R + O-+-aQ- - No + R4., 0,

'dx do

respectively. In the Donnell-Mushtari theory, the transverse shearing force Q0 is considered to
be negligible in the second equation of (2.6) and is subsequently neglected when determining
the final equilibrium equations. Similarly, with 0 as a reference origin, the balancing of
moments with respect to 0, .r and z yields

R am,± Oo - RQ, + RMio = 0
dx dO

OMo R a RQ0 o + Rib, = 0 (2.7)

No - N+L - = 0

7



resplectively. BY referring to the integral definitions of AMro, No,- and 110. it, can be seen that

the third expression in (2.7) is identically satisfied (IiIe to the symmetry of the stress tensor.
Time enters the equilibrium equations through the inert ial terms; hence for time-dependent

p)rol)iems, the force (j, is replaced by -ph' T2 -" ±q, where p is thle density in iass per unit volume

of the shell. Similar substitutions are made for qjo and q,. By combining (2.6) and (2.7), one
arrives at the time-dependent. DonnellI-Mushtari equilibrium equiations for a thin cylindrical
shell with radius of curvature H and thickness h

Hp2h 0,2 11V, ONo d - Rq,

Hph i)2 1, = _ Nto (2.8)
0)t2 O0 0.(.

&,1"02 1 (2!11 ,)20ll•.o Oi0 + Oib,
Rp/, - o -R + o = W, + -. +-

j)/2 Ox*,. 1? 02 d.rd0 Ox 00

XW\e note that, the representation of the external loads as surface moments and forces is
convenient whenm deriving the strong form of the equations of motion. lHowever, in many

applications where it is necessary to actually d(etermine expressions for these loads or when
iising the weak form of the equations, it, Is a(lvantageous to relpresent these loads in terms
of line forces and moments. To accoml)lish this, let f11, -,, ,.A•. and -\o denote tle external
resuiltants acting on the edge of an infinitesimal element which have the same orienlation as
the interrnal resultants (lepicted in Figure 2 (with units of moment and force per unit length
of middle surface). Force and moment balancing can be used to write the area moments and
in-platie forces iii te(rms of these line moments and forces, lhus vielding

,. O x ., H 0o (2.9)

7ba -- l , If -
1? 00 

-0 O.r

We point out that. the first expression in (2.9) can be obtained from (2.6) simply by
replacing N,, by N3,. awil deleting jý in the first expression of (2.6). Similar analysis leads to
the other expressions in (2.9). The use of these fine moments and forces in (2.8) is equivalent
to incluiding the external resultants directly when determining the equations of moment anld
force (quiliibriuim for an infinitesimal shell element as done in (2.6) and (2.7).

Thie sui)stititjotio of tlhe internal moments and forces in (2.5) and the external resultants
from (2.9) then viehls

I i)2u i)(21 1 -_ V 2u 1I + v "21, v Ow (I -1 _ 2) ý(9,\
(2 012 i).r2 2U2 j902 2H i.r)O 1 ).r Oxih .r

I i)2 l -I v I i) Iv 1 + I i"2, I 0n, (1 - ,2) I i)(,2o (2.10)
(2 i02 "2 i).r ý !12 (092 21? i).ri)O /112 09 Fh H )O

W ?v v 011 10 1, 1 V (I _ 1 2 ) [ I ) 2 , 0  O io 1.( + 7 + 1- -- a + -w"+ -"V /, ,, /•o' .
.2 j)j 2 + r IOx+l2 j) t)+ '

2 111+12 Ei. q?)l 2 j)0'2 Or 2

L8



where again, u, v and w are the axial, tangential and radial displacements, respectively [14].
The constant CL given bý

1
P[s(1- V,)J

is the phase speed of axial waves in the cylinder wall. The external line forces N'. and N0
and moments Ml1 and Alo have units of force and moment per unit length of middle surface.
respectively, and are generated in our problem by the activation of the piezoceramic patches.
The load 1,, is left as a surface force since this is the form that it usually takes in problems
involving the excitation of a shell through normal forces (an example of a normal force in this
form is the pressure exerted on the shell due to an exterior or interior acoustic field).

We again emphasize that the resultant expressions in (2.9) (and hence the system (2.10))
were derived for an infinitesimal element; hence certain modifications must be made when
considering the global form of the resultants and equations (as is necessary when the resultants
are generated by a piezoceramic patch). In certain cases (e.g., for certain types of moments
and forces), the system (2.10) agrees Nith the strong form of the global shell equations. In
general, however, this is not true, and one must exercise extreme care in determining the form
of the global representations for the moments and forces.

Weak Form of the Donnell-Mushtari Cylindrical Shell Equations

In order to find the weak form of the shell equations, the kinetic and strain energies of
the shell are ,teeded. By combining the Kirchhoff shell hypothesis with the strain results
from classical elasticity theory, it follows that the strain energy stored in the shell during
deformation is given by

U h2 -hl2'J 1  (o,-e- + 'oeo + o'1 0y 0 ) (1 + z/R) RdxdOdz

where the stains and stresses are given in (2.1) and (2.4), respectively. Substitution and
integration (with (1 + z/R)-1 replaced by its geometric series expansion and neglecting powers
of z in the integrand which are greater than two) yields

I Eh [5 + 50 )2 _ 1S• ( - , ') ( • " + • -2 ( 1 - iv ) E X E o
210 10 (1l-h/2)t Xe/k-' e 4

-+ ?C) 2 - 2(1 - v) KxKO - + -(6xKr E0 K0)
+ h K O272)}

-- ý-X-o + + 2 0
2 R H2 2 R2 dO.

With the change of variables s = r/R, the total strain energy can be written as

U=I Eh [IDA4 + kIBFLid<,<O
2 o o (1- ,A)

9



where k Ii 2/( 1211, I) ,j is thle iiitegran(I corresp~ondinig to the l.oii iel1- N itishltar Hii l(rY
and( IyjL deleiot es the I erilis Which are ret ainied to \iel( th lieIvirne. Flifigge anld Lnr y"e sI rainl
ei ier~gy. Th lese 1 wo comlponen ts are gi ;en I w

IDA! + +-W -(-' L ~ ±w + + O)

+ 
2

(V i()( W It ) 2

-(1 v) ((+ v) + 02

For sinliplicit v of preseiitat ion, a veak forim of the shell eqiala oiis will be developed is-ing

the Doiiiiell- NIiiht arn strain ex IressiOn a COrresp)olilii ig Set of eqi iat ions Call be e'Ier ived InI a
similar mainer *in thle IBvrii. Hliigge and~ Liirve case.

The kiniet.i c energy of the Shell is given byV

2_ , [' R i)2 
'2 (di 2 \21 1

/2 lii+ I p)+~ ?d~so

'Ill roiig11loit thils dlevelopmlent . it is, assumed fi at the, shiell sat isfies .4h1f a r diaph raynt 1 ollind

arV Coiilit ions at x =0, f, thiat. is, it. is assumied thiat,

-w-NY. = 1I" - 0

at thle emil(Is. Thiis is done nie(rel ' to (lemon strate the eq iii valence lbet wcen tlie weak formi whli ch
folowsaiii te sron fom areay disculssed; oth ~r b~ouindary conitiot ios call be treated wit i

Simin Iari arguiiviiet s. It, shliommd be not~ed t~hat thle coniiit~ioiis v' =- (I= at th cleeds are essemit ial
boluda ,i Iav (iclidt ions anid hence imust be en forcedI onl thle cliosein State spa e.

For aii arbit rarv time in t~erval [I.Ii.considler thle act ion Inutegral

A[i] (T - U)dI 2.l

where W [ti_ t%.iv] is conisidlered Iin the space V WI (Q!~) x I/,, ( Q) x /12 (12) . I er del iot es
lie shiell andI thle suibscript, b decnotes thec set. of fuinct ions satisfying the esseiillial boundIi(ary

Cl(0dilt iou s. (n) t( hen considers variations of thle form

I 111ie I =, [11, . 11.2. 11:j] ild (ii = k") (,2 (ý I MV1 ae chosell so 1.hid
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i.) ýI(t,.,.,.) C V

ii.) ((,o,-, ... )=ll((t ,.,., .).

Note that this enforces 7 C [112(OT)]3 , i(to) = 11) and b E V.
l1amiltton's principle states that the miot ion of the shell must give a slationarv value to I lie

action integral when compared to variations in the motion, thus leading to Ihli reliirelnent
that for all 4,

kXith the definition (2.11) for the actioui integral, Hamilton's principle leads to the cuildi .ion

,1[,h:I I'I /) [_ l + _ _ (02 + _- -- J: 2 d.sd1dl.,ot at -- to O f Ot at o '•

.,o (1- •) \• + + I') (,7,1 + ,12-•- + 1(',.1
Oo1 di' do ; On 0 Ol

-(1- v) 7 -1 11' + 711---6 + ±/2du- + /01

i2 i O O s . O

.V 2 -2 d2 it, +d I 2 2- ,d2 :

Vr11d02,, 203 - a['2 0203

-O'W 0'203 1 dsdOdi
d.,0 9 J.d~ I

Note that this must hold for all arbitrary intervals (ia. tI] and all admissible pert uralios.
Temporal integralion by parls ill the first integral in conjiuiction wit I lie uiderlying condition
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that q(to) = q(t1 ) then yields the co<pled system of equations
,t ) 2 O - V 2) • 0 2u 0 + f O + O) do,
qMI t jj/ t2l 01 - ~R2 Os 00 ) s

+(I1-P) 1 W ai+ O 0, a,+ al)aidsd~dt 0
+ 012 2 Os 0 00 11

, 1 2f(t) IR - (1 -,2) 2 _U al 002
712(0o RE O - + -+ +

f EuOt2 ( a's (90 q$ 1
+( - ) 90 2 1(al) +- -- dsdOdt =0

[Oas 00 2\ OsX / sJ

L 713(t) 2o Jo - E Ot2 0921 -0a + s + I 03 + V) - ) 03

-k{V2WV20 3 -(1 - t) [ 2 032 + 00s -2 030 2 91W aJ 0 dsdOdt= 0

The weak form of the equations of motion for the unforced shell is thus
2r --I-R-Rt2a(02 + (u 9: + + -(1 0 (v + 00] 1 dsd0=0LI0  jas~ M 2-v+w yas~-v M~~~ 4 sd

-2, 1"/R( R 2 a2v / Z7 Ov 0q2 + a -+i (Ž O• ý0f2) dsd0 =0

I0 Lo jc98~3 aVo~ W) 2 s )a

'2s, 1"11 00 2s0 aOsOO9 i
UT c -5=t2 3 + V- + - + W 03

+k {V 2WV2
3  V)-( -, a'03 + a2 0. 3 -2 o 2 I o9 2o3o dsdo= 0

for all ý E V. Again, the constant CL = E21 is the phase speed of axial waves in the
cylinder wall.

In terms of the moment and force resultants (see (2.5)) and the original axial variable .r,
the weak form is

•2 7r{Rph 01u +RNj40" + 0-- d0 dO=O
I " fo a P' ax. 00 1

"L'j RHp 0 2 +N,--+RNx!-ý'-rjd.rdO=O (2.12)

L2 Ll "it•2f( O203 1 0'23 02.0 3 'I - M o 2 •o 3d
Rp Noha - RM , 0or2 - 0 02 RAI, 2, d.rd0
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The derivation thus far has been for the unforced shell. To include tile contributions of
applied external forces and moments which do nonconservative work on tile shell, one can ap-
peal to an extended form of Hamilton's principle or more formally include these contributions
directly in the system (2.12). Both techniques yield identical final equations and for ease of
presentation, we will take the latter approach.

The inclusion of the applied line forces and moments k', NV0 and A)h, fig and the surface
load 0,, in the system then yields

Rph- 0 + RN. + No,-- R- ryj dxd0.=

0q22 0¢>2 Ox
2 jI O +No(9 + RNro d2 =0=0

0 0Rp jt2doOx doO (2. 13)
2,, 2,,, 2 1 ~wRM.'d3 ,10 d2 03 d203
f2lf~Ot NM d2, -R M, 0  -2,1,

RioV 0/- -3 + N 0 03 - 1 *0(2 002 Ox00
S02q5 1~ 024 O {,a anzd-R 3 + RM: 0---Al+ 0-02/ =oX~V

for all E € V as the weak form of the Donnell-Mushtari equations of motion for the forced
shell.

With the assumption of sufficient smoothness, the weak solution in this form is consistent
with the strong solution in (2.8). The vanishing of several of the boundary terms which arise
during integration by parts is a result of the choice V = H'(Q) x H'(f)) x H2(Q) for the
function space since the state variables and test functions are required to satisfy the essential
boundary conditions

V = IO' = 0

at x = 0, f.
We point out that in the weak form (2.13), one is not required to differentiate the applied

force and moment resultants NV, N0 , M, and Mo as is required in the strong form (2.10). This
proves to be very beneficial when these terms are generated by finite piezoceramic patches as
discussed in the next section.

Plate Equations

Consider a thin rectangular plate whose edges lie along the coordinate lines x = 0, ( and
y = 0, a. We assume that the plate subjected to both longitudinal and transverse loading
via the surface forces and moments q•., o, and iix,hzbo. With u,v and w denoting the
displacements in the r, y and normal directions, respectively, the strong form of the Kirchhoff
plate equations is given by

13



p0h21 ON 1  ON _,I

0 t2  Ox Oy
• 02'tv ONy N•: 21t

ph- i2 - ON r -_ ._
012 eOy Oxiq)(.11
e0 2 1w a2AJ •. Al , 2 M 2 M . O "2 M " + a-b +

0t12 Ox2  OY2  OxOy oyox.. Oy +o.r
where the moment and force resultants are

Eli. O, Od, EP,. (o. 2u, ,L
X= - =2) 2 + 2

NY= Ei 9 OlM l )1'ý &il

I - O V2Oyj ~ 12(l - 1/2 ) Oxd y2  /jr

E E (O (Ov + Eh3) I~ Eli 3 "1

Y *N9 2(l +v) \.d.r ay /12(1 +±v)Odxý)y

The first, two equations in (2.14) describe the longitudinal movement of the plate while the
third equation describes the transverse motion of the plate.

To find the weak form of the equations, the vector it = [u, v, w] containing the displace-
ments in the r, y and normal directions is considered in the space V = t (Q) x I1' (Q) x Ilt(Q)
where Q) denotes the plate and the subscript b denotes the set of functions satisfying essential
boundary conditions for a specific problem. By using analysis similar to that just. described
for cylindrical shells, the weak form of the equations of motion for the plate can be found to
be

pff(rO!/ O~i

beI"I'Iphj &>,0Nj+ 2±)0 Na. 2 ŽýA) O& } 06 dxdy~ (2.10

•' 1) 0 2  0_02_ i )02p th 012 q NY + 02 - d JX rdiy =~ 0x

10 ~~2 Al dx? -0 () y ~ -i~(.5

-4,01 d Ak3 0,:3 +MI'I i) 2
6 d=0

for all [ = ' 02, 03] C V. As in the case of the thin shell, the external line forces and

moments N•, NY, Al, and AMy, are related in an infinitesimal sense to the corresponding area
forces and moments qa., q1, 73i1• and ?it appearing in the strong form of the equations by the
relations

- x '(2. 16)

f 1Y Ox



If the solution has sufficient smoothness, integration by parts can be used to show that thlie
weak solution is consistent with the strong solution in (2.14).

Beam Equations

The motion of an undamped thin beam of length ( and width 1 can be deterinined from

the dynamics of thin plate theory by considering only the vibrations in the .r-direction along

with the usual transverse vibrations (in the z direction). From (2.14) this yields the strong
form of the Euler-Bernoulli beam equations

Wit iPV,.
ph-- r-- 2q ,

(2.17)
d2 .111 d2M diiij

ph - - = ,,'_ +
ah2  0 dr 2 

- r

wvhere

Ox

Eh 3 d 2w 0 2iu
AI - - -EI12 dxr2 Ox"2

Note that 1 = h3 /12 is the moment of inertia for a beam of width 1.

A corresponding weak or variational form of the equations can be determined by choosing

V H (Q)x 12(g) for the space of trial functions where Q denotes the beam and the subscript
b again denotes the set of functions which must satisfy the essential boundary conditions.

Through either an energy derivation such as that given for the thin shell, or simply integratioi
by parts, one arrives at the variational form

]o ph-01 + Nx - dx 0 for all ol E H'(Q)

(2.18)
f'~~ 03~' H2q3 (qq'

J )phd1 M13 2 q 7 M- 46+ 2 3 dx = 0 for all E3 E H•(Q)

of the beam equations. We point out that in this form. one is not required to differentiate the
external force or moment resultants, kJ' and Al3,, which proves to be very useful when these

terms are generated by the activation of finite piezoceramic patches.

3 Patch Contributions to the Shell Equations

For a thin cylindrical shell, the strong and weak forms of the eqiiations of motion are given

by (2.8) and (2.13), respectively. In the case of the weak form, it, is seen that the loads
can mbe written in terms of the line forces and moments iNa ., :%, ,fl and A 1 and the iorinal

surface load qn,, while the strong foirm contains surface loads and the derivalives of surface
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mometits. In the problem under consideration, these quantities result from the activation of
tpiezoceramic patches of thickness 7' which are assumed to be perfectly bonded to a cylindrical
shell of thickness h with midsurface radius R (see Figure 3). As shown in Figure 4, the patches
are assumed to be situated so that their edges are parallel to lines of constant x and 0. Because
the patches generate no shear strains, the exterior load 4,, is taken to be ,, 0. If the weak
form (2.13) is used, the external line moments and forces are simply

(J),, Al 6 =Iq (3.1)

where (AlM)p, (Mq)p, (N,)p, and (No)p, are the respective moments and in-plane forces which
are generated by the patches. The subscript pc is used to denote patch properties and to
help differentiate them from shell properties which have no subscript. When it is necessary
to differentiate between the two patches, the outer will be denoted with a subscript pci with
a subscript pc 2 being used to denote the inner patch.

However, if one is using the strong form (2.8) of the equations of motion with piezoceramic
actuators, the surface moments and forces to be used in (2.8) are given by

S10(AlO)pe ,(M,)pe
- R 00 0.r I(Ar) (3.2)

S= -- l,2(x),l,- l r 2(0) R 0

For a patch with uniform thickness and bounding values xi. . 2, 01 and 02, the presence of the
indicator function

I I X < (.r1 + r.2)12

,.0(.r) = , .r = (x, + .r2 )/2 (3.3)
-- 1 , r > (xl -+-xr2)12

derives from the fact that the forces generated by the patch in the x-direction are antisyrn-
metric (equal in magnitude but opposite in sign) about the line x (= l + x-2 )/2. The same
holds true for the forces in the 0-direction with S1,2(0) being defined in an analogous manner
to 81. 2(.r) in (3.3).

We point, out that the differences between the external surface force expressions in (2.9)
and (3.2) are (file to the fact that the former were derived for an infinitesimal element whereas
the latter are global expressions which preserve the overall signs of the forces generated by the
patches as well as reflect the discontinuities due to changes in sign. These differences result
from the property that the sense of the forces is highly dependent on the specified location
of the axis origin on the neutral surface. Hence the direction of forces throughout the patch
differs in some locations from those observed in the infinitesimal element thus necessitating
the inclusion of the indicator functions in (3.2).

Unlike the forces, the action of the moments is specified with respect to a fixed point on
the neutral surface (the point 0 for the element in Figure 2 or a point, on the left edge of the
shell ill Figure 1). As long as the orientation of the infinitesimal element and full shell with
patches are the same, the line moments derived for the infinitesimal element will be consistent
with those of the full structure. Thus the expressions for the general infinitesimal moments
in (2.9) need no modifications when describing the surface momentls generated by tie patches
as given in (3.2),
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Figure 3. Strain Distribution for the Composite Structure.

Figure 4. Piezoceramic Patch Placement.

In order to determine (M. )p,(M)'p, (N.)pe and (No)pe and hence the loads on the shell,
it is useful to write them in terms of the normal strains eseo and midsurface changes in
curvature K , r.6 of the middle surface (z -- 0) of the cylindrical shell. That is, we want to
express the patch moments and forces in terms of the reference surface characteristics of the
cylindrical shell.

We emphasize that due to the presence and activating nature of the patches when a voltage
is applied, the normal strains and changes in curvature are no longer given by the expressions in
(2.:1) which were derived for a homogeneous thin cylindrical shell. At this point, -,, Eo, K. and
K0 are considered to be unknown and are determined by formulating stress-strain relations in
the patch and shell followed by the balancing of moments and forces in the combined structure.
[n this manner, expressions for these midsurface characteristics (and hence the resulting patch
moments and forces) can be found in terms of the material properties of the shell and patch,
the radius of curvature of the shell, and the voltages being applied to the patches.
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Stress-Strain Relations in the Patch

From (2.1), the infinitesimally exact strain relationships for a cylindrical shell with mid-
surface radius R are given by

C = + Z,
______ (3).1)

CO = 1 z+ I R (c-o + ± -SKo)

where c, and CO are the normal strains at an arbitrary point on hlie cylindrical shell. If
the patches and cylindrical shell are thin ini comparison withi the radius of curvattire of Ole
shell, then it is reasonable to assume that the relationship (3.1) is maintained thirougliout the
combineld thickness h + 27' as shown in Figure 3 (see also [12]). hlence we will take

(cx)ljc =(Ex + ZKr)

1 (EO + Z-K ) 
(3.5)

1 + z/H

where (c,)p, and (co)p, are the normal strains at an arbitrary point on IlHi patclh. Note that
this assumption implies that the strains at the interface are contimnous anid that thle ceners
for tHie radii of curvature for the shell and patch) are concurrent. As seen in (3.4) and (3.5).
the tangential strain distribution in the shell and patch is in general nonlinear iM z (see also
Figure 3).

We point out that the model at this point differs from the flat plate t)iezoceramic coupling
model [15] both in the presence of the term z/R in thie tangential strain expression of (3.5)
and in the fact that the model retains the couplinig between the normal midsiurface strains anid
thie changes in curvature (this is analogous to simultaneously considering both longiturdinal
anid transverse vibrations in a plate). Although thie ratio z/R is neglected when deriving
the Donnell-Mushtari model (see (2.2)), we retain it here so that curvature effects are fully
included in the coupling between the patch and shell. The retention of this term also ensures
that the patch interaction model can be directly applied to higher order shell models without
necessitatinig changes to accommodate the greater accuracy.

From the constitutive relations in (2.4), it can be seen that the stress distributions withinl
the cylindrical shell are

E

1 = E (C., (:3.6)

(70= E- ~(CO + cx).
I - 1/2 (o±v~

The stress distriblution in the patches will contain contributions from both the free pieZo-
ceramic actuator strain and the strain distribution in (3.5). At this point, we assume that
wlieni voltage is applied and the patch is activated, in accordance with basic shell theory,
equal strains are induced in the .r and 0 directions and thie radius of curvature is riot changed
in either direction. Patches satisfying this assumption could be made, for example. by taking
a. portion of a thin-walled tublular l)iezoceramic element . For the outer )atcli, the magnitude
of the iduduced free strains is theni takeni to be

CPI= ((')1-1 ((cO)I,r = !
7'
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whiere (131 is a, piezoceram-ilc stralin conlstanlt anl(l V'I Is thle appliedl volt age. W\e polint out
thiat whien a voltage is applie(I to a patcli wit Ii edIge ('oor(liiifat (es 1.1-*1.2.01 aIi~ ()2- tilie P"'in1
(.1-, 0) =((,rl + -1-)/2, !?(0l + 02)/2) will iiot miove whiereas thef( axially s~vmiiiiet rnc polintS onl
eitherT side will Move allci eqal am-tountt iii opposite (lirect ions. Tillis imot ivat es t lie lis(' of t lie

iid(icator fiiiictionis at, va~rioiis p~oint~s dihroigliout the( (levelopnileiit
Assminiiig that thie two patchies hiave thle Samle Younigs nio Iluullis, FEP, . and~ P'oi'sson s. rat Io.

*p t Olie stress dilstrilbutoiin in thie outer p)al cli is givi byn )

wit li t hie niegat ive signis result ing froml coii servat toll of forces. Simi I am' ex mressioi is ate is IIS~ for
t lie indubcedl free st rai ii and( stress (listrilblit iou inl the Iiii uer 1)at cli. By ('0111paril ig ( 3.6) anl~

(3.7), it c-an be niotedl that a stress (liscmilt i ilt v occurs at t lie jut ('rface hlife to toli (Ii lterent,
miaterial lprope(rtlies of tHie shiell and~ hpat ch.

Moments and Forces in the Patches

By it egratimig tHie stresses over thle face of a fiind~ami-ental veliement, it follows t hat d ie
iuoniienti and~ force resiiltanits for Ht, li at (lies c'aii be expresse(l as

1, ) h27 (ij.)Pr I h/ (d .Tj )AIpj( - + ~
(M~~ /2 H m2-l

phi2+T h1
(AJ 0 )p,, = 2 ((O,, :dz '1( A 0)P,2 - '(To42o&

Jh/2-T1/

h2T -T (h /2
/2 h - T/-'(o ~2d

withl unlits of m1omlenit, per unlit lenigth and~ force per tini Iitlegt il, respect ively. '['lie ex pl icit

(lehpenalence of the patchi's miomuent, ano~l force resultanits oii the shiellindsi accirctrst('
tý,. ýo. Kx1 anl(I K'9 canl be seemi 1)* comlliniilig (:3.5), (:3.7) aii(l (31.8) (we agaiii 1)oiii out that Ht li
miiistirface strainis C" 0 all(] curvature chianges K1., KO are tinikiiowii anolI will be (letCerIMi ii(l bY
balanicing mnomients ani(l forces in tHie comilbitiedl st rtmctture).

Patch Loadings

1t. sholdml be niot e(l thlat throughiout I hIls dlevelopmlenit edIge ('fre(t s I tie t o I Ilie pal (lies lidv
been gignoredl ani(l tHis the expressioiis inl (3.8) apply' to patc(lies ('overi'iig t lie ftill 'i rcu un fereu'ce
of the shiell and hiavinig infiniite axial lemigt Ii. Thel( equal iots ('all be mtodIified for- liii~te pat cli('s
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in the following manner. For a patch with bounding values rl, X.2, 01 and 02 as shown in

Figure 4, the total line moments and forces are

(MW), [(Mo)p,. + (Alo)p,,] [Hi(x) - 112(x)] [H,(0) - HA()]

(M0 )p, = [(M,)pe, + (AIMr)p,, [Hi(x) - H.2(.r)] [H(0) - H2(0)]

(Nx,)pe = [(NX)pej + (Nr1pc [(x) - 11.2(x)1 [HI (0) -H112(0)1 S1,2(X)i,ý1,(0 (.9

(No)p, = [(No)pe + (No)p•,] [H1 (x) - 112(x)] [Hi (0) - H12(0)1 S1 ,.2 (4).; 1,2(0)

where H is the Heaviside function and Hi(x) = H(x-xi) , i = 1,2, with a similar definition in
0. The indicator functions SI, 2 (X) and S1,2(0) (see (3.3)) again derive from the property that
for homogeneous patches having uniform thickness, opposite but equal strains are generated
about the point (ir, 0) = ((XI + X2)12, R(01 + 02)/2) in the two coordinate directions.

The combination of the expressions (3.8) and (3.9) yields the patch moments and forces
(Mr)pe, (Mo)pe, (Nx)pe and (No)p, in terms of the middle surface characteristics of the the
cylindrical shell. Integrating the expressions in (3.8) is somewhat cumbersome however, and
the procedure can be facilitated by determining the patch moments and forces in terms of the
resultants of the forced shell. To accomplish this, force and moment balancing is employed.

Determination of the Patch Moments and Forces

The application of moment equilibrium about the center of the shell yields the two condi-
tions

Aix + (M.)peI + (M1 )PI2 = 0

Mo + (Mo)pe, + (Mo)pe 2 =0 (03.1)

where M, and M9 are shell moments. Similarly, force equilibrium in the xr and 0 directions
yields

N,,, + (N.1 )pei + (N.,)p, = 0N + (OP.+ (OP2= 0No + ( No )p, ± ( No )v 2 =0 .(3.11)

Thus the total patch resultants can be expressed as

(M)P1), + (MX)P12 = = M -I/2 0Q (1 + dz
,h/2R

J h/2

(N1 )PI, + (Nx)P=2 = -N , -h/2 O 1 + d

Jh/2 R
(No)pe, + (No)p,, = -No h/2 aodz

-h/2
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which yields

(MA'ix1e+ ±(A'Ir)Pe2  -Eh 3  K, + V"O +
12(1 - ,v2) I R+

(MO~P" + (MO)pe2  -Eh 3  KO + I'K, -0

12(1 - V~2) LR
- Eh " K,](3 

.12)

(N -ý)pei + (N )P, 2  1 V2 K + j'o + (3 1

- Eh [h' Ko

(Ne)pe1 + (No)p, 2  V 1 Eh K ± , + 12

The two tangential expressions are approximate in the sense that the terms (I + z/R)-1 are
replaced by the truncated geometric series 1 - z/R before integration (this is the same strategy
which is used when determining the moment and force resultants in the Byrne-Flfigge-Lur'ye
general shell theory). The patch resultants in (3.12) are then used in (3.9) to determine the
total line forces and moments generated by the finite patches. Because these resultants are
functions of the material properties as well as the midsurface characteristics, they can be
easily constructed once ex, e0, Kc and K0 have been determined. This is again accomplished
by moment and force balancing.

Determination of the Midsurface Characteristics

In terms of the stresses, the moment and force equilibrium equations (3.10) and (3.11) can
be written as

fh/2ax +z + h/2 +T ax pe ( I -/2 - z dz 0
Jh/2 \R W-_/2-T 2  ±

R zd( + (ae).,zdz+ (ao)pzdz 0

f-h/'2 1h/2 h/2-T

(:3. 13)

and

Ih/2 Il+z) d h/2+T + z) z+-h/2 (a I +R) dz 0

-h/2 +h/2 Rh/2-T
(:3. 14)

,,/a/dz + /+1 (ao)p,,dz + ,,/2_(0,) dz = 0J h/2 112+T12T P '

The integrals appearing in (3.13) and (3.14) are explicitly evaluated in the [1].
After collecting terms, this yields the 4 x 4 linear system

[Ashu + A, + A.2] e = -- lf, + cPC2 f 2  (3.15)

in the unknowns c = (6x, E0, KO)T. The shell contributions in Asheu, the outer patch
contributions in A1 and fl, and the inner patch terms in A2 and f-2 are
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-4T 0 E1  El
0 E E1

* 4 sh~ll R I
E2  E21" I 0

H 12

E2V E -2  0 _ 1
n• 1.2

S+ a 3  a:(3 i,, a I + a2 a 2 Izp'

a2  
a1

(a3ip, -PC + a713 a,21 -p + a2

a3 a4

R? + + a:3 a~ l

- -.a + T a 3 1 .p( - - -+ a 3

(a2  -lR2 - a3 -a 3vw ---, + a 2  a2lP.

-- 31c a - a 3  (1 2 1
Vp - , + a12A2 a 3 R1

R + T Tvve R - a3 - 1 ,3

T11e 3 a14
Tv-f R3 + T -- a3 Ipe -- - a 3

L R R

a d-a2 + a3 2 a

R R
a3 -- a3

+f, - (1 + +p.) T + .' ) -)3

R, R
71 T

with
S- /•Eli

3
(l -- _ A) V2 = Eh(l - V,)E 2E.(1 -PC2) E ,2 = •(1 -,)

(' ] , /]l 4 1 4 + T - h

a,r = 1- 16 h + 7) -h" a3 = I ' 7

a2 = 1 8 It + 7 - h 3 (14 = T "2 + 6hT +,1T'2

Note that the coefficients ai , I', are of order at most. three in h.
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We p)oint out that, A,,1 _4 I .~ 1_241f ani( J2 dlepen'd oil malt erial p~roperties of thle patchles
aiid slie I ( thIickniess. t'last ic properties(, an(I Poisson rat 105), thle radlius of cu rvatutre of' the
WAli1 and~ thlie volt age lheinig a pplied to thle patches (recall that dP., 1= d~`/7 where V, is thle
appliedt volt age iuto t) le otit r patclh wvith a simijlardtefi nit ion for ( )'j 'Ihe ab ove formunlat ion
isolates5 lt'e contribu i jtios due to thle inidi viduial patchfes antd is uise'ful if one wants- to act ivat t

ond lv one of thlie pat dies. It' both p1 atc(lies ale p~reseiit. I he ab ove' formutlat ion canl be~ siolnph lied

whlere'
-ý( LI: + 2'12) 0 El + 2a2 ~ E I + 2 a,2vj-

01 - (El + 2(z2) Eli, + 2a-2 v,,, El + 2'12

L'2 + .27' E 2 L' + 21'. I (2/ + 2(14)0
R 12

E 2 0 + 2Tv,, ~ 07 T4 ( 12h 2

Algorithmii for Determininig the Shiell/Patchi Interactions

Ihel( steps which are nec'ssary for solving for the shel loads d1 ut to lt'e act ivat ion of t lie,
patchies can be summnarizedi as follows.

(1) Set tup the .1 x 4 system Acl f and solve for' c ,(ýE, ýýO h, .. ) T wvhic! contains thle
in udsuirface, st rainus and changes in cuirvatuire.

(2) Det erin i i th lie line monetitls and forces which are( generat e(] by t lie initv \iduial p)at (lesit'sa

(3) The cor-respondinig com-binedl resultant s for HinOt 1)atchi(s aie givei by (3.9).

(4) lThe r('sutilwais from (1.9) are (lirectlv stibstitAwl iiito (2.13) as the load on t lie shell if t he
we'ak shell eqtuat ions are being used (recall that in this case. q1  0 and'r ( ' ),

10)1,, AL. ( l.) = i (Al0 ) as sum inarizNd in (3. I)) For the st romig form of
lie equtat ions of miot~ion, thle derivative expressions inl (3.2) are formned anud suhibtitutNei

inito (2.S) as tH ie' externial load.

WXe poinut oh t t hia~t t lit' suibst~it.uit.ion of th li'Iat chl mioneiits auth forces into th lit'rtontug forivi
of t he shlf eq uationis restils in one tleri vat i e of th li'Wlaviside anid inud iator ftimictitls for

thle forces anud two den vat~ives of the MlANistl funct~ion foi' the mioments whetrt'as uto suich
Ii fft'ren t i ation is req uiriedh in thli( weak formn (the dterivativets arie t ransferred on! ttoIlt th t'st
ft ict~itms auio oii( siminply inut~egrates over the region covered by thle pat ('lit's). 'Tliis is oil(it
uinot~ivat ion for isinig thet weak foin of the shell eqna t~i011  in nianai appl ica I itons.
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4 Patch Contributions to Plate and Beam Equations

Analysis similar to that used for the thin cylindrical shells can be used to determine the forces
and moments which are due to the activation of piezoceramic patches which have been bonded
to a flat plate or beam.

Plate/Patch Interactions

The patch interactions with a fiat plate can be determined in a manner similar to that
used in the study of the interactions between a thin cylindrical shell and a pair of piezoceramic
patches as discussed in the last section. Direct force and moment balancing leads to the 4 x 4
system listed under Method 1, and this system can then be solved for the unknowns E, - K

anid K,. By then substituting these values into resultant expressions similar to those in (3.12),
one obtains the forces and moments generated by the patch. This procedure can be simplified
however, by noting that the strains in the x and y directions of a homogeneous flat plate are
equal when equal free strains are generated by the patch (see [6]). Hence two of the variables
can be eliminated which leads to the more easily solved 2 x 2 system given under Method 2.
It should be noted that the two methods yield the same final force and moment resultants.

Af•/hod /

Force and moment balancing similar to that used in the study of the patch/shell interac-
tions yields the system

[Api.t, + A, + A 2] C Z- 6Peifl + eP12 f-2

where c = (f . , ", , Y)w The matrices and vectors containing contributions due to the plate
and two patches are

0 0 E1  Elv
o 0 Elv E1

Aplate 0 lv E

E2  E2v 0 0

E2V E2 0 0

(13 a3/pe 1a2 a22vpe -a 3  -- L3Vpc a 2  a2lVpe

A a3 t.A a3 a2Vp e a2 --a3v,'p. -a3 a2Vpe a 2

T Ti/p, a 3  a 3 vp, T Tvp, -- a3 -- ape

Tvpe T a3VP, a3 T v-p T -a3Vp, -a3

and
a 3  a3

(13 -- (13

f , = ( I + V , ,) T , f 2 = ( l + T

T T

T
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with
Eh:3(I - v22 E h(1 -I
12 EI,(1 - 1,2) , E.(1 -,/2)

I1 c 1 [4(h~\ 2

Note that these matrices and vectors are identical to those of (3.15) if one takes R -- oc in
tile latter expressions. Once ., Yý , and KY have been determined, the moment and force

resultants can be found in a manner similar to that used for shells.

A.1thod 2

Here we take advantage of the fact that for a homogeneous plate, the strains in tile r and y
directions will be equal when generated by equal free (unconstrained) strains from the patch.
[fence we take

C = Cg = cuy KZ

as the strain distribution in both tile plate and the patch. This yields the stresses
E

r = (rx = a'y 1= - IC

in the plate and(

(a~+,= (rxp•,= c~up = (- c- -
( 0) p,,+ : ( ff ),,,• ( 7y),, __ E 7,, ( C• -Cr• )

- Vpe

in the patch. The force and moment resultants for the patches can be found either b1 ille-

grating the stresses over the 1)atches or by using force and moment balancing to express them

in terms of the resultants for the forced plate. As was done in the shell analysis, we will take
the latter approach since it yields simpler expressions for the external resultants. Force and
moment balancing in conjunction with integration of the forced plate resultants then yields

(Alr)pr, + (A'lX)pe 2 = (MO)IP + (M,)1 ,, 2  - Eh:' K

12(1 -vi)

I- Eh

As expected, these relations agree with those in (3.12) for the forced shell with the exceptlion
of the O( I/B.) terms in the latter case which are due to the curvature.

The total resultants generated by a, pair of p)atches with edges parallel to lines of const ant
xr and y call be determined in a manner similar to that used with the shells. For a patch with
Ibouindiig values .ri, .r2, y1, and Y2, the total resultants are

(rAb:)/,,f _ (" )r I(A •)'' + ( A]")pc2 ] [/Ii(.r) - 11 2 (.r)] [1i 1 () 12( )]

(1.2)
+ 7  [1i (x) - 112(.r)] [11i (y) - /12(0/] Si ,2(.)S 1( l
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where agai II, Ili (x)) If (x( - x,) , 1 ,2, (Ie,'(.) denotes the indi cator function tlescribled i[
(3.3), and tli(y) and 1,".2(Y) are de(ined in an analogous man ner.

As before, c and Kt" must be found in order to d(etermie the resultants in (4.2). This is
accomplisiled Via moment and force balancing which then yields tile system

[A,,pt + A, + A2]- p,,c fi + .Pef2 (2f.3)

where 0 (c,)T. Tlie component matrices and vectors are

" =platt [ E] , AI [a: a2 A2 -3 a2 ]
A;hl¢ E2 0 'T a:j - :

f= 7"' = T

TFie subscripts 1 and 2 again refer to the outer and inner patch contributions. respectively.
and the ('onstants El, E2, (2 and a3 are given by

El Eh 3 (1 - V.,P1) E2 Eh( 1 - vp,
12E141-I,) 1 v)(I- )

1 I + + 1 h 1 7 2 +- +73

a21 ( +~ 17'): - Vi -- I + - -
-4 - / 4 2 3

3 I. + T 1- h"2 =-T(h + T)

8 2

Algorithm for Determining the Plate/Patch Interactions

As in tile case of the" shell, the steps necessary for determining the plate loads which are
(11c to thie l)atch(es can be summarize(l in a sipnlpie algorithm.

(1) Set lip and solve the 2 x2 system A( =f in (4.3) where c (s, K) contains the nmidsurface
strain and c(hange in curvature.

(2) D)etermine th"e comnl)ine( resultamts for thie finite patches through (1.2) in comj iunctlion
wit It (4.1).

(3) O(n((, d(etermine(d, the resultants from (4.2) can l)e substituted directly into the weak form
of thie plat.e equations (2.15) as the load on the system (with q,, = 0 and N= (N'V)p,.
&Y=(Niv),:, m3. = (M A,)p,, MIv = (AMy)7,). If the strong form of the plate equlations is
l)('ing used, the surface loads canl be (determined via the expressions

4x = - ,'i.2(.r) , ( ) i).r , = -- "' ' ,2 (r)".1, 2(Y)

7,;, a(i:,),, bl a(w, t ),,,
i!1 , WY - id.r

aln(I thdese latter valuies can be su bstitut.e(d inlto thie equiliil)rum equations (2.1.1).
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As ini thle case oft the shiellIs, thle use oft tie strong form-i resulIts tin litp to two (ter]ivat Ives oft thw
Heaviside function whiereas the use of thie weak form-i alleviates Hths 1)roblein l) tranisferriiig
the( dlerivatives onto the test functions.

It shiouIld be noted that the voltage clioice c,, clz:_ p causes pure extewsioH

(patchi pairs excited(It~in phiase") tin the plate whille pure bending occurs wit ii thie chioiCe
CPC - 11f = (1, (4Lout of phiase" excitation).

Special Case: cp, ce Cpe PCp2

tin thils case, the constanits Eanid K hiave the values

-El +2a.2

whlichi leads to the( total patch) mom1Ients

(AI,)P, 0AI,10,) = 3 Th(h + T) 2 );21p [1-1, (.1. - H2(r)l [III (Y 11201]
h 3 + (60 2 ±' +l2h T + 8T3)~~ ' v iY 2!/

wliiere

Epe (l-I) Epe

E(1 - vp,) (I (- "pe)

Thlits line mnomtent expression is equivalent to the relation

M1 A~= p-(2 + pz) _It 2 cp [ I1,(.r) - H-2 (X)] [ H1 (Y) - 1I2 (Y)]
13 !pz(C3 + p2 + :3pz)

withi p. T/h ,,i h12 whiichi was olbtained by Kimi anul Joiies [12] ini thieir developmient of a
mi-odel for the 1)ending initeractions between a flat plate and a piezoelect ic actunator. titi their
work, thiey considler a lpatchi conifiguration whiich excites pure beniding Iin the( plate and I lieu
determine thie effective patchi mnomient by first isolatling the in-terface stress of tlite systeiii.

Beam/Patch Interactions

T1he patchi contributions to the dynamiics of a thin beami can be (letermiiined directly fromi
tHie lplate/patchi initeractioun model if onie considers only vibrations ini the .r-direct ioni aloiig
withi the usual tranisverse vibrations. The systemn for the beamn/patchi configuration is then
idenitical to that found in (4.3) withi thle constant~s El and E-2 now givenl byN

12 Ep Epf

Once eý aliil K hiave beeni (eternii med, the( force aiil tuomzenit resum It ats for t he patch) are
exp~ressedl ini terms of those of the( forced beami and are givenl by

(Mxr)pci + (Air)Pe -ElK( F

(N1 -)p,, + (N)h 2 - ,b
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where I = h:V/12 is the moment of inertia for the beali. For patches with1 bound Inig vallies .1r

and ,r2, the effective moients and forces are

(All-)r = A01 )p, + (Al')pg] [I(1. - .,, ) - 4(3 --

(N,)p, = [(N•),,., + (NA)Pj] [II(x - xl) - H(x - -'2)] SIA.(r)

which can then be substituted directly into the weak equations (2.18) as loads on the beamn
(with q/,, = 0 and ]N3 = (NA),, M1,. = (AM)p,.). In order to determine the patch loads for the
strong form of the beam equations, the corresponding surface moments and forces are found
via the relationships

$,; ()2 ( X( ) () 1,,
-a Ox12()O

and these latter values are used in (2.17). We again point out that this results in the need to
differentiate the Hleaviside function (once for the force and twice for the moment) whereas this
problem is avoided in the weak formulation since the derivatives are transferred onto the test
functions. In fact, the effect o' the Hleaviside functions in the latter case is to simply restrict
the integrals to the region covered by the patches.

Special Case: Top Patch Activation

('onsider the problem of a beam having only a top activaling patch. The system in this
case is

[.a3T El±2 +:Va4ý
which implies that the midsurface constants are then given by

Epe T (EPCT 3 + EhI3 )
E 2TP + 4EE ,.7eT3h + 6EEpf 7 2 h2 + 4EEpj 'h" + E 2h"

6EEpe Th(T + h)

E2 T4 + 4EEPE, T 3 h + 6EEP, T2hI2 + .1EEP, h" + E2t/14

These expressions for I and K are the same as those found by Gibbs and Fuller [10] when they
w( e investigating the moments and forces generated by a single patch which was bonded to
a thin beam (these expressions are equivalent to their (7) and (8) once the latter have been
simplified and h/2 has been substituted for h). The moment and force resultants ( .),,• and
(N,)Pf, can then be found by substituting E and K into (4.A) (with (A!lI,- == (A',.)P,2 = 0 since
there is no bottom patch). We note that the resultants in this case are equivalent to those in
[10] although the forms and signs differ slightly due to a slight difference in the fornimulat ion
of the mnderlying beam equations.
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5 Conclusion

Ini I his "ot'k, geeR~alI rlituhts (let'Il~ng Ilie interacrt iton bIt wV('(' a p~air of' iitzocetatinic pat c it's
M id anl u nderliving t'astit' stnicitire have 1 Mt'en presente(d. Whiiile' the presend1 lionl is f'or ('last i(
siilstruttit les t'inisist ing orf a Olini t'Xliidlica I 51(Tl. Iplte adil (an Im . lthe t(chiniquies dlisciussedt

loi' (1(1 'rinhirig tl liphe miomenttt ", and forces, g('rierat(t lv bY lt'h piat cdies call be( dIi reel lY\'X entd'tted Io
11ore toni 1pleX st. rtctutres and georniet ries.

hii thle c'ame of t he shell, I'lie patchies are assurmed to be curved arid thle couplli ng b el weerl
the itt-plane stravins and tile betiding. which is dute to thecrtr'xaltire, is ret ainied. BY tusing force
arid ionoierit lbalalidig to (ltrrviivi the ri~lsilrface strains and clialiges ill cuirvatuire of'I ilie

COnibinted st run't rre, e'xpressionis for I lie patchi rinoieiit and force resiiltatits callt be tlevelopt't'.
lIn thlis mnannter, Ilie loadling (Ili e to ant act tiat~itg pai r of patc(hles c-al lbe expressed inttIermas
of th lelr teria I properties of thle shell anid lpatches (thiickness, clast ic piropertit's anti Poissoll
ratios). the radi us of ('lirvat are of t~he shell, and the volt age being applied to each of thle
patc(les. Thiis proxvides a she)I/lpatc (in teract ion nIlodel whiichi retainus thle cuvtu~aiire' ('fe('ts

as wxetll as adini tp 1 ot entially different voltages ino the two 1)al ches. We point out thIiat t he
general t~echniques tised for' det~erini nirg t his cylindri(ical shel I/patch model calt also be uis'(i(
to dete'rmin(' the intteractions bet ween pair's of 1)i(zoceramic p~atchies and more general shells
(for examaple, in th li'cam,' of a sl)Iiv'ial shell. one wotild retajit the crirva ulr(' efr'ccts i n hothI
Coortliniat e (lire't~ions).

Thie I'tehniu ties for dIetei'ini rng thle p~atc cinjteract ions wit~h a cv Ii r~ilrica I shell we're thte'n
tsedt to dlevtelop gt'riera I int~eract~ion modlels for pa tches which are bonlded to t hin1 flat pl1at es

and bettamis. As in the slie! Irase% t.he modelis are suflficientt l generalI to a)llow for potentit al ly
difl'eri uug) pat~ch ivolt ages which iraplies t Iiat t hey can~ he u sed for t'ont rol liiig systerm dy-namics
wliem Witt iiflex rii d antd ext ensionalI vj brat ions art' preset'rt. To (comp ~are wVill exisXt inrg analyses.

thle plate(/ pa cit i nterac'tion maodel is shown to be )e('(iii valt'rt to t hat of [12] iii thle sp'ci al case
Xwii('I p)ure benditing mnot ion is e'xcited.( .Also, t he beaiii/patc m~ uode(l is eqii vab lNt toIhat of'
[101 when it'ere' is one( at'tuat ing p~atclh. Henice thle beaml and1 plat e initeract ion miodeles ar
Con sistemt with ei(xist inrg tht'ories in 1We special cast's previously- exam i" ittt xiii a im) al lowviiig
for' more general st lm'utie/ pat~ch i nter'act~ioris whichil ('a ri arise in mrieioi cornplex appl it'aIions
for examinple. ('ouip)1ed svstentis.

F'or' e'achi of t he( shltl1. 1)1ate arnd be(am i nt eract ion imodlels, 1 lie coit ri bit ions of t lie pat dies
ai'e careft il .v descri'bIed iii both t he' stromig anti weak forms of t lie t i rite-depend(eill si utu (tria
equ ationis o~f mot ion . This p~rovitdes models whiiichi c-an he uisedl iii a varietyV of applicat ions
mincluinhrg numrieric'al si murlat~ioris. pam'amnet~er ident'tific'atiort. andit cotntrol sciemeis. rIn each of
I ii(s('ap1))1icat ions. terollaes iicnilgeerltopirtuxidlt for a varietyvof a ppr'oxi matiron
techntiquies i nclutdinig modtal . Spectral, plnit'e anid fi nit e element schelemts. F nall ' . thle patch'l
lo)ads dlet ernilini'd by t litse iil er'acl ion models -ari be appllied t o higher orde(r' ,,I i'tct ural riiodltls
ti e'xact lYv I lie samtie mianiiner. arid anralogotis mnodlel,, canl 1e ut sed for riurlt i pl' pat cli pair's anti

rMor'e Co l~lt'~x gtu )tiiet rtes.
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